Learning-Order Autoregressive Models with Application to Molecular Graph Generation
Presentation

Learning-Order Autoregressive Models with Application to Molecular Graph Generation

Paper Author

Michalis K. Titsias Google, DeepMind

Abstract

Autoregressive models (ARMs) have become the workhorse for sequence generation tasks, since many problems can be modeled as next-token prediction. While there appears to be a natural ordering for text (i.e., left-to-right), for many data types, such as graphs, the canonical ordering is less obvious. To address this problem, we introduce a variant of ARM that generates high-dimensional data using a probabilistic ordering that is sequentially inferred from data. This model incorporates a trainable probability distribution, referred to as an order-policy, that dynamically decides the autoregressive order in a state-dependent manner. To train the model, we introduce a variational lower bound on the log-likelihood, which we optimize with stochastic gradient estimation. We demonstrate experimentally that our method can learn meaningful autoregressive orderings in image and graph generation. On the challenging domain of molecular graph generation, we achieve state-of-the-art results on the QM9 and ZINC250k benchmarks, evaluated across key metrics for distribution similarity and drug-likeless.

Research Paper

Previous Talks

36 talks

An Artificial Intelligence Model for Translating Natural Language into Functional de Novo Proteins

Oct 02, 2025 Timothy P. Riley, Mohammad S. Parsa, Pourya Kalantari, Ismail Naderi, Kiana Azimian, Nemya Begloo,

Self-supervised graph neural networks for polymer property prediction

Feb 20, 2025 Jana M. Weber

Learning-Order Autoregressive Models with Application to Molecular Graph Generation

Aug 07, 2025 Michalis K. Titsias