NovoMolGen: Rethinking Molecular Language Model Pretraining
Presentation

NovoMolGen: Rethinking Molecular Language Model Pretraining

Paper Author

Kamran Chitsaz, Roshan Balaji, Quentin Fournier, Nirav Pravinbhai Bhatt, Sarath Chandar Indian Institute of Technology Madras

Abstract

Designing de-novo molecules with desired property profiles requires efficient exploration of the vast chemical space ranging from 1023 to 1060 possible synthesizable candidates. While various deep generative models have been developed to design small molecules using diverse input representations, Molecular Large Language Models (Mol-LLMs) based on string representations have emerged as a scalable approach capable of exploring billions of molecules. However, there remains limited understanding regarding how standard language modeling practices such as textual representations, tokenization strategies, model size, and dataset scale impact molecular generation performance. In this work, we systematically investigate these critical aspects by introducing NovoMolGen, a family of transformer-based foundation models pretrained on 1.5 billion molecules for de-novo molecule generation. Through extensive empirical analyses, we identify a weak correlation between performance metrics measured during pretraining and actual downstream performance, revealing important distinctions between molecular and general NLP training dynamics. NovoMolGen establishes new state-of-the-art results, substantially outperforming prior Mol-LLMs and specialized generative models in both unconstrained and goal-directed molecular generation tasks, thus providing a robust foundation for advancing efficient and effective molecular modeling strategies.

Research Paper

Previous Talks

40 talks

An Artificial Intelligence Model for Translating Natural Language into Functional de Novo Proteins

Oct 02, 2025 Timothy P. Riley, Mohammad S. Parsa, Pourya Kalantari, Ismail Naderi, Kiana Azimian, Nemya Begloo,

Self-supervised graph neural networks for polymer property prediction

Feb 20, 2025 Jana M. Weber

Learning-Order Autoregressive Models with Application to Molecular Graph Generation

Aug 07, 2025 Michalis K. Titsias