Flow Autoencoders are Effective Protein Tokenizers
Presentation

Flow Autoencoders are Effective Protein Tokenizers

Paper Author

Rohit Dilip California Institute of Technology

Abstract

Protein structure tokenizers enable the creation of multimodal models of protein structure, sequence, and function. Current approaches to protein structure tokenization rely on bespoke components that are invariant to spatial symmetries, but that are challenging to optimize and scale. We present Kanzi, a flow-based tokenizer for tokenization and generation of protein structures. Kanzi consists of a diffusion autoencoder trained with a flow matching loss. We show that this approach simplifies several aspects of protein structure tokenizers: frame-based representations can be replaced with global coordinates, complex losses are replaced with a single flow matching loss, and SE(3)-invariant attention operations can be replaced with standard attention. We find that these changes stabilize the training of parameter-efficient models that outperform existing tokenizers on reconstruction metrics at a fraction of the model size and training cost. An autoregressive model trained with Kanzi outperforms similar generative models that operate over tokens, although it does not yet match the performance of state-of-the-art continuous diffusion models.

Research Paper

Previous Talks

43 talks

PathInHydro, a Set of Machine Learning Models to Identify Unbinding Pathways of Gas Molecules in [Ni

Oct 04, 2024 Ariane Nunes-Alves

Self-supervised graph neural networks for polymer property prediction

Feb 20, 2025 Jana M. Weber

Learning-Order Autoregressive Models with Application to Molecular Graph Generation

Aug 07, 2025 Michalis K. Titsias